

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

STANDARDIZATION OF HARIDRADI LEPA USING HIGH PERFORMANCE THIN LAYER CHROMATOGRAPHY

¹Dr. Archana Kumbar, ²Dr. Ashok Kumar B. N., ³Dr. Radhika Ranjan Geethesh P.,

⁴Dr. Ravindra Angadi, ⁵Dr. Sushmitha V. S.

¹3rd Year PG Scholar, ²Associate Professor, ³Associate Professor, ⁴Professor & HOD, ⁵Assistant Professor, Department of Rasashastra & Bhaishajya Kalpana, SDM College of Ayurveda Udupi, Karnataka. India

ABSTRACT

Introduction: Standardization is the process of evaluating quality & purity of drugs by means of various parameters. HPTLC is on among them which works on the principle of separation is adsorption. It is enhanced form of TLC. *Haridradi Lepa* is explained by our acharyas under *granthi/ arbuda chikitsa*. **Aims & Objectives:** To standardize and evaluate the different constituents present in *Haridradi Lepa*. **Methodology:** 3μ l, 6μ l, 9μ l of each of the *Haridradi Lepa* extract was applied on a pre-coated silica gel plates to a band width of 7 mm using Linomat 5 TLC applicator. The plate was developed in Toluene: Ethyl Acetate: Formic acid (5:1.5:0.5). The developed plates were visualized in short UV, long UV and then derivatized with vanillin sulphuric acid and scanned under UV 254, 366 nm and 620nm. R_f, color of the spots and densitometric scan were recorded. **Results:** Under short UV it showed 1 band, under long UV 9 bands were observed. Following derivatisation vanillin sulphuric acid (VSA) showed 3 bands. When the plates were densitometrically scanned at 254nm, it showed 6 bands, at 366nm, there were 5 bands observed, at 620nm 6 peaks were observed. **Conclusion:** The peaks observed in HPTLC can be considered for fingerprint profile analysis.

Keywords: Haridradi Lepa, arbuda, granthi, HPTLC.

1. INTRODUCTION

Standardization refers to the confirmation of its identity, determination of its quality & purity, detection of nature of adulterants by various parameters. It includes morphological, microscopical, physical, chemical & biological tests. Any product before marketed is necessary to undergo these assessments.

Haridradi Lepa is a herbo-mineral formulation. It has been explained under various classical textbooks under *granthi/arbuda chikitsa* like in *Bhavaprakasha Nighantu*^[1], *Gadanigraha*^[2], etc. According to *Bhavaprakasha Nighantu* it comprises of *mulaka kshara, haridra churna* & *shankha churna* as ingredients.

HPTLC is an advanced form of Thin Layer Chromatography (TLC). It works on the principle of separation is adsorption. It has high resolution & accurate quantitative measurements than TLC. Hence an attempt has been made to standardize *Haridradi Lepa* using High Performance Thin Layer Chromatography.

2. AIMS & OBJECTIVES

To standardize and evaluate the different constituents present in Haridradi Lepa.

3. MATERIALS & METHODS^[3]

- **3.1. Materials Required:** Digital weight, water bath, pipette, alcohol (ethanol), toluene, ethyl acetate, formic acid, chloroform, dryer, vanillin-sulphuric acid spray, test tube, etc.
- **3.2. Instruments:** Micro syringes, Linomat 5 applicator (sample applicator), pre-coated silica gel plate, twin trough chambers (hptlc development tank), scanner, UV cabinet visualization, digital camera for photo-documentation.
- 3.3. Stationary phase: Pre-coated silica gel plate.
- 3.4. Mobile phase: Toluene: Ethyl Acetate: Formic acid (5:1.5:0.5).

3.5. Sample preparation for HPTLC:

1gm of sample of water-soluble extractive of *Haridradi Lepa* is dissolved in 10ml of ethanol completely. This ethanol extract is taken in a test tube.

3.6. Procedure:

 3μ l, 6μ l, 9μ l of each of the above extract was applied on a pre-coated silica gel F254 on aluminum plates to a band width of 7 mm using Linomat 5 TLC applicator. The plate was developed in Toluene: Ethyl Acetate: Formic acid (5:1.5:0.5). The developed plates were visualized in short UV, long UV and then derivatized with vanillin sulphuric acid and scanned under UV 254, 366 nm and 620nm. R_f, color of the spots and densitometric scan were recorded.

4. **RESULTS**

Table 1: Rf values of sample of Alcoholic extract of Haridradi Lepa

At short UV	At long UV	Post derivatisation
-	0.20 (F. green)	-
-	0.27 (F. green)	-
0.30 (D. green)	0.30(F. green)	0.30 (purple)
-	0.33(F. green)	-

-	0.49(F. green)	-
-	0.56(F. green)	-
-	-	0.61 (Purple)
-	-	0.68 (purple)
-	0.77(F. green)	-
-	0.84 (F. blue)	-
-	0.90 (F. green)	-



Figure 1: HPTLC Photo-documentation of Alcoholic extract of Haridradi Lepa Solvent system – Toluene: Ethyl acetate: Formic acid (5.0:1.5: 0.5)

Track 1 – Ethanolic extract of Alcoholic extract of Haridradi Lepa – 3µl

Track 2 – Ethanolic extract of Alcoholic extract of Haridradi Lepa – 6µl

Track 3 – Ethanolic extract of Alcoholic extract of Haridradi Lepa – 9µ

JETIR2109235

Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org

c278

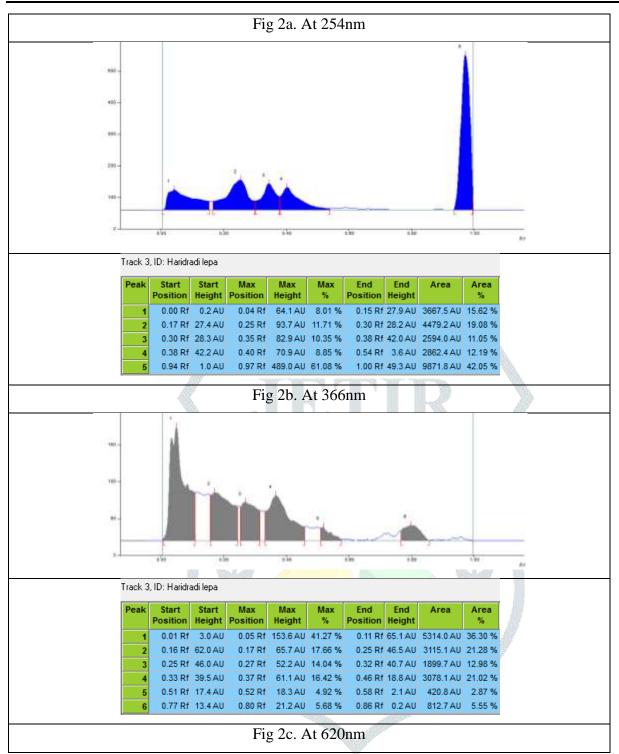


Figure 2: Densitometric scan of Alcoholic extract of Haridradi Lepa

5. DISCUSSION

The chromatographic plate developed in toluene ethyl acetate (solvent system). When subjected to manual photo documentation at short UV showed 1band at Rf 0.30 (dark green), at long UV 9 bands were observed (different intensities of fluorescent green) namely at Rf 0.20, 0.27, 0.30, 0.33, 0.49, 0.56, 0.77, 0.84, 0.90. Following derivatisation vanillin sulphuric acid (VSA) showed 3 bands (all purple) at Rf 0.30, 0.61, 0.68. When the plates were densitometrically scanned at 254nm, it showed 6 bands. Among which major ones were at 0.29 (13.75%), 0.35(25.43%) were prominent ones. At 366nm, there were 5 bands observed, among which evident ones were at 0.25 (19.08%) and 0.97 (42.05%).

Following derivatisation at 620nm by densitometric scan 6 peaks were observed. Among which notable ones are at Rf 0.17(21.28%), 0.37 (21.02%) were major ones.

6. CONCLUSION

The peaks observed in HPTLC can be considered for fingerprint profile analysis. It can be used as standard markers of the sample of *Haridradi Lepa*. To analyze & interpret the results, it requires in detailed study with trial & error method.

REFERENCE

- Brahmashankara Mishra, Rooplalji Vaisya, editor. Commentary Vidyotini of Bhavaprakasha of Bhavamishra, Vol. II. 11th ed. Varanasi: Chaukambha Sanskrit Bhavana; 2009; p.451. pp.836.
- Indradeva Tripathi, Ganga Sahaya Pandeya editor. Commentary Vidyotini of Gadanigraha of Shodala, Chaturtha Khanda of tritiya Bhaga. Varanasi: Chaukamba Sanskrit Sansthan; 2011; p.265. pp.807.
- 3. Standard Operating Procedures for HPTLC [Internet]. PDF Available from: <u>https://www.hptlc-association.org</u>

